LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Energy and exergy analyses of a novel hybrid system consisting of a phosphoric acid fuel cell and a triple-effect compression–absorption refrigerator with [mmim]DMP/CH3OH as working fluid

Photo from wikipedia

Abstract Energy and exergy analyses were conducted on a proposed hybrid system consisting of a phosphoric acid fuel cell (PAFC) and a triple-effect compression–absorption refrigerator with [mmim]DMP/CH3OH as working fluid… Click to show full abstract

Abstract Energy and exergy analyses were conducted on a proposed hybrid system consisting of a phosphoric acid fuel cell (PAFC) and a triple-effect compression–absorption refrigerator with [mmim]DMP/CH3OH as working fluid (HFCAR). The HFCAR system was modeled and simulated based on the current density model of PAFC, isentropic efficiency model of assisted compressor, and mass and energy conservation model of the compression–absorption refrigerator. For the basic design condition, the detailed operating parameters of each status point, energy conservation, temperature difference, and total thermal conductance of each component were simulated and discussed. For the variable conditions, the effects of electrical current density, PAFC temperature, and compression ratios on 16 key operating parameters were simulated and analyzed. A critical electrical current density was proposed. Under condition of critical current density, HFCAR system works as a cooling system with the largest cooling capacity. The variation characteristics of the critical electrical current density were studied. The exergy losses of each component were simulated and analyzed. The PAFC efficiency and heat transfer characteristic of certain components should be optimized to improve the thermal performance of the HFCAR system.

Keywords: absorption refrigerator; system; energy; current density; compression absorption

Journal Title: Energy
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.