LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Shock tube and kinetic study on ignition characteristics of lean methane/n-heptane mixtures at low and elevated pressures

Photo from wikipedia

Abstract To acquire ignition control methods for dual-fuel marine engine and HCCI engine, ignition characteristics of lean n-heptane/methane mixture under pressure of 2.0 bar and temperature range from 1241 to 1825 K… Click to show full abstract

Abstract To acquire ignition control methods for dual-fuel marine engine and HCCI engine, ignition characteristics of lean n-heptane/methane mixture under pressure of 2.0 bar and temperature range from 1241 to 1825 K were studied by shock tube and CHEMKIN with LLNL3.1 mechanism. And ignition processes under temperature range from 700 to 1200 K and pressure range from 40 to 140 bar were investigated by CHEMKIN with NUI mechanism. The results illuminate that at low-pressure high-temperature condition, n-heptane’s replacement and the increase of n-heptane content obviously reduced ignition delay times (IDT). The reduction degree of IDT decreased when n-heptane content was high. N-heptane’s addition also reduced IDT. But this reduction magnitude was less than that of n-heptane’s replacement. Methane’s addition slightly inhibited n-heptane’s auto-ignition. The reaction time of n-heptane was obviously earlier than that of methane. N-heptane decomposition induced radical formation firstly, which triggered subsequent n-heptane’s H-abstraction and the advance of methane’s oxidation. At ultra-high-pressure low-temperature condition, increasing n-heptane’s content enhanced negative temperature coefficient (NTC) behavior. The end time point of complete consumption of two fuels was the same. Low-temperature condition inhibited n-heptane decomposition, with n-heptane’s H-abstraction dominating ignition process.

Keywords: temperature; characteristics lean; ignition characteristics; methane; ignition; heptane

Journal Title: Energy
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.