LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Hybrid thermal performance enhancement of a circular latent heat storage system by utilizing partially filled copper foam and Cu/GO nano-additives

Photo from wikipedia

Abstract Low thermal response of latent heat thermal energy storage (LHTES) systems has been their main barrier in large-scale applications and commercialization. Amongst all proposed techniques, the incorporation of metal… Click to show full abstract

Abstract Low thermal response of latent heat thermal energy storage (LHTES) systems has been their main barrier in large-scale applications and commercialization. Amongst all proposed techniques, the incorporation of metal foam appears to be more promising owing to the notable thermal conductivity and high ratio of surface-area-to-volume. Nonetheless, metal foams augment the thermal response of the LHTES systems at the expense of reducing their thermal capacity and weakening natural convection. The principal aim of the present study is to numerically assess the capability of hybrid heat transfer enhancement of an LHTES through a combination of partial metal foam and nano-additives. Capric acid is considered as the phase change substance in a circular-shape thermal energy storage unit with a two-pass heat pipe. A combination of Copper foam and Cu/GO nano-additives is analyzed as the hybrid enhancement approach. The outcomes show that the combination of partial copper foam with Cu/GO nano-additives is more effective than each enhancement technique separately. Moreover, the results reveal that the charging power of the LHTES can be enhanced to about four times higher than the case of pure PCM at the cost of only a 3% reduction of the thermal storage’s capacity.

Keywords: storage; foam; nano additives; foam nano; heat

Journal Title: Energy
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.