Abstract The use of electric bus fleets has become a topical issue in recent years. This paper aims to analyze strategic bus fleet scheduling and dynamic wireless charging (DWC) planning… Click to show full abstract
Abstract The use of electric bus fleets has become a topical issue in recent years. This paper aims to analyze strategic bus fleet scheduling and dynamic wireless charging (DWC) planning problems based on data obtained from the transportation center at Binghamton University. More precisely, we have developed a mixed-integer mathematical model to simultaneously select the optimal location of the DWC facilities and find the optimal battery sizes of electric buses (EBs) for the system. This DWC planning model allows all the system’s EBs to travel the common routes (depot-base station-depot) safely despite their different optimal battery sizes. Additionally, we have developed a scheduling model to find the optimal number of EBs by considering the additional charging time and battery size restrictions. To allow organizations to determine bus replacement plans that will meet their fleet electrification targets in a cost-effective way, we have introduced joint and disjoint scheduling planning strategies for the current conventional bus fleet and a potential EB fleet. Further, we have reformulated the DWC model so an EB can serve several routes with uniform battery size. The results show that the joint scheduling with one optimal battery size is more cost-effective than disjoint scheduling with route-specific battery sizes.
               
Click one of the above tabs to view related content.