LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Experimental study of a thin water-film evaporative cooling system to enhance the energy conversion efficiency of a thermoelectric device

Photo from wikipedia

In the study, a new method to enhance the performance of a thermoelectric generator (TEG) device by utilizing the water-film evaporative cooling is proposed. An experimental device was constructed by… Click to show full abstract

In the study, a new method to enhance the performance of a thermoelectric generator (TEG) device by utilizing the water-film evaporative cooling is proposed. An experimental device was constructed by incorporating a water-film cooling pond with a commercially available TEG. Experiments were performed to investigate the effects of the main operating conditions (ambient temperature Tamb was 25 °C), TEG hot-side temperature (TH = 50–100 °C), ambient relative humidity (RH = 15–90%), and water-film thickness (twater = 1–9 mm) on the TEG output performance. Additionally, the output performance of TEG under different cooling methods was compared. A TEG prototype device was constructed to generate electricity/steam using seawater evaporation cooling without external electrical energy. The results indicated that TEG hot-side temperature and water-film thickness significantly affected output performance. However, the ambient relative humidity did not considerably affect TEG output performance. Given TEG hot-side temperature TH = 100 °C, ambient relative humidity RH = 15%, the TEG prototype device-generated open-circuit voltage of Uopen = 1.55 V, maximum output power of Pmax = 290.32 mW, and a steam generation rate of 9.82 mg/s. The results showed that evaporative cooling is an innovative method to improve the performance of TEG.

Keywords: teg; water film; performance; device

Journal Title: Energy
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.