LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A high-efficient solution for electro-hydraulic actuators with energy regeneration capability

Photo from wikipedia

Abstract This paper proposes a cost-effective, robustly practical solution for a high-efficient electro-hydraulic actuator (EHA) for linear drives. The solution addresses the challenges of high costs and limited efficiency that… Click to show full abstract

Abstract This paper proposes a cost-effective, robustly practical solution for a high-efficient electro-hydraulic actuator (EHA) for linear drives. The solution addresses the challenges of high costs and limited efficiency that limit the application of EHA for the electrification of many off-road vehicles. Based on a variable-speed electric motor and a low-cost technology for a fixed-displacement pump, the proposed solution is suitable for a compact implementation and it is capable of energy regeneration under overrunning load conditions. Two different architectures—an open circuit and a closed circuit one—are considered to determine the most practical and efficient configuration as well as the control features. Both architectures minimize throttling losses associated with the conventional regulation of hydraulic actuators. Actuator velocities below the minimum and beyond the maximum allowable pump flow rate are achieved in both architectures using a proportional valve that bypasses the pump flow. The paper describes the design methodology as well as the simulation and experimental activities performed to verify the control strategies as well as energy efficiency. Considering an EHA system of about 20 kW, a complete efficiency map of the system is determined for all the possible four quadrants of operation thus including both resistive and overrunning loads, where energy recuperation is implemented. Simulation and experimental results show that the energy efficiency of the hydraulic systems can reach 84.7% in resistive phases. In assistive phases, the hydraulic system can recover up to 81.8% of the actuator energy. The comparison between open-circuit and closed-circuit structures shows the advantages of the former in terms of energy efficiency. The proposed solution is suitable for electrified hydraulic actuation systems, in both industrial and mobile applications. With the advantages of the low cost of the hydraulic unit and high energy efficiency, it is particularly suitable for mobile applications such as construction machines, that are recently experiencing a significant electrification trend.

Keywords: electro hydraulic; high efficient; energy; solution; energy regeneration; efficiency

Journal Title: Energy
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.