LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Thermo-economic optimization of steam injection operation in enhanced oil recovery (EOR) using nano-thermal insulation

Photo from wikipedia

Abstract Energy loss during steam injection in enhanced oil recovery (EOR) is customarily happened which not only reduces the steam heating value and increases the cost of operation but also… Click to show full abstract

Abstract Energy loss during steam injection in enhanced oil recovery (EOR) is customarily happened which not only reduces the steam heating value and increases the cost of operation but also leads to severe damages to injection pipes. In order to enhance the delivered heat to the oil deposit, it is common praxis to raise the steam injection rate or its temperature, in spite of the consequent energy loss enhancement. This is because such operations are considered more economical and easier to be applied in comparison to traditional pipe insulation. In this paper, it is tried to quantify the economic effectiveness of such diffused solutions, by means of an empirical apparatus, making a comparison with an advanced insulation technique, which employs nano-materials. Results show that 35% increase in steam injection rate with 35% extra investment only enhanced delivered heat to reservoir up to 7% while it caused 90% more energy loss. On the other hand, 21% increase in steam temperature with 11.5% extra investment enhanced delivered heat to reservoir up to 7.5% while it caused 14% more energy loss. However, implementing nano-thermal insulations could reduce the energy loss from 25% to 44% with an extra investment of less than 3%.

Keywords: energy loss; steam injection; steam

Journal Title: Energy
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.