LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Characteristics and kinetic analysis of pyrolysis of forestry waste promoted by microwave-metal interaction

Photo from wikipedia

Abstract In the present work, a method of pyrolyzing forestry waste (FW) under microwave-metal interaction was proposed. The kinetic analysis of the process was carried out using a microwave thermogravimetric… Click to show full abstract

Abstract In the present work, a method of pyrolyzing forestry waste (FW) under microwave-metal interaction was proposed. The kinetic analysis of the process was carried out using a microwave thermogravimetric analyzer. The mechanism of FW pyrolysis under microwave-metal interaction was discussed from the perspective of microwave-induced metal discharge and non-discharge processes. The initial pyrolysis temperature Ti reduced, and the maximum pyrolysis rate Rm and pyrolysis characteristic index S increased by employing a method where microwave and metal were coupled. The number of metals inserted also significantly affected the pyrolysis behavior. Rm in the presence of one metal was 92.3% higher than that recorded in the absence of metal. The results of kinetic analysis revealed in the presence of metal, the activation energies at 400 W and 560 W were 51.7% and 57.5% lower, respectively, than the activation energy recorded in the absence of metal. Multiple effects of light, heat, and plasma produced by microwave-induced discharge caused the local pyrolysis of FW. The promotion of FW pyrolysis in the non-discharge stage was primarily caused by the microwave absorption of carbon into heat and the conversion of current on the metal surface into Joule heat.

Keywords: kinetic analysis; forestry; microwave metal; metal interaction; pyrolysis

Journal Title: Energy
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.