LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Influence of water/acid washing pretreatment of aquatic biomass on ash transformation and slagging behavior during co-firing with bituminous coal

Photo from wikipedia

Abstract In this study, bituminous coal and two aquatic biomasses, Ulva lactuca and Hydrilla verticillate, were selected as the raw materials for studying the ash slagging behavior. Furthermore, Ulva lactuca… Click to show full abstract

Abstract In this study, bituminous coal and two aquatic biomasses, Ulva lactuca and Hydrilla verticillate, were selected as the raw materials for studying the ash slagging behavior. Furthermore, Ulva lactuca was pretreated by washing with water and acid; the influence of pretreatment on ash transformation was subsequently studied. Co-firing tests were performed in a drop tube furnace and the SO2 content in the flue gas was determined using a flue gas analyzer. The chemical compositions and mineral phase properties of the collected ash were studied using several analytical techniques, including ICP, XRF, SEM-EDS, and XRD, as well as thermochemical software Factsage 7.2. The results indicated that the most extreme agglomeration of coal co-fired with Ulva lactuca was due to the increased content of alkali metals, especially K. Pretreatment can effectively reduce the slagging trend of co-fired ash. Acid washing had a higher removal rate of S and alkali and alkaline earth metals but did not show a lower slagging tendency when co-firing with coal. The SO2 emissions during co-firing were less than the value calculated by linear interpolation but much higher than the SO2 emissions when coal was burned alone.

Keywords: water acid; acid washing; slagging behavior; ash transformation; bituminous coal; coal

Journal Title: Energy
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.