LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Urea fuel cell using cow dung compost soil as a novel biocatalyst for power generation applications

Photo from wikipedia

Abstract This paper shows use of cow dung compost soil as a biocatalyst to optimize the urea fuel concentrations in the range of 0.1 g/ml to 0.5 g/ml in cow dung compost… Click to show full abstract

Abstract This paper shows use of cow dung compost soil as a biocatalyst to optimize the urea fuel concentrations in the range of 0.1 g/ml to 0.5 g/ml in cow dung compost microbial fuel cells (CC-MFCs). The results indicate that the CC-MFC with the urea fuel concentration of 0.4 g/ml produces the maximum power. Moreover, the bacterial population plays a vital role in electricity generation. For constant cell operation and cell sustainability, it must be refuelled with the catalyst after every 12 h cycle and the max power density was generated 17.84mW/m2 by CC-MFC. This study confirms for the first time that cow dung compost directly works as a noval biocatalyst. Here primary focus is to generate power through soil processes using urea-rich wastewaters (urine) as fuel. CC-MFCs are inexpensive, non-toxic, leakage proof, low maintenance, less labour intensive, durable, stable, easily disposable, sustainable, and efficient. Moreover, these fuel cells can generate clean energy without biocatalyst deactivation. Research is going on fabrication and development of CC-MFC for application depend upon the type of urea rich urine wastewater used as fuel for power generation and cleaning the environment.

Keywords: dung compost; cow dung; urea fuel; power; fuel

Journal Title: Energy
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.