LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Programmable Adaptive Security Scanning for Networked Microgrids

Photo from academic.microsoft.com

Abstract Communication-dependent and software-based distributed energy resources (DERs) are extensively integrated into modern microgrids, providing extensive benefits such as increased distributed controllability, scalability, and observability. However, malicious cyber-attackers can exploit… Click to show full abstract

Abstract Communication-dependent and software-based distributed energy resources (DERs) are extensively integrated into modern microgrids, providing extensive benefits such as increased distributed controllability, scalability, and observability. However, malicious cyber-attackers can exploit various potential vulnerabilities. In this study, a programmable adaptive security scanning (PASS) approach is presented to protect DER inverters against various power-bot attacks. Specifically, three different types of attacks, namely controller manipulation, replay, and injection attacks, are considered. This approach employs both software-defined networking technique and a novel coordinated detection method capable of enabling programmable and scalable networked microgrids (NMs) in an ultra-resilient, time-saving, and autonomous manner. The coordinated detection method efficiently identifies the location and type of power-bot attacks without disrupting normal NM operations. Extensive simulation results validate the efficacy and practicality of the PASS for securing NMs.

Keywords: scanning networked; security scanning; networked microgrids; programmable adaptive; adaptive security

Journal Title: Engineering
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.