LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A direct Chebyshev collocation method for the numerical solutions of three-dimensional Helmholtz-type equations

Photo by stayandroam from unsplash

Abstract In this study, a new framework for the numerical solutions of inhomogeneous Helmholtz-type equations on three-dimensional (3D) arbitrary domains is presented. A Chebyshev collocation scheme (CCS) is introduced for… Click to show full abstract

Abstract In this study, a new framework for the numerical solutions of inhomogeneous Helmholtz-type equations on three-dimensional (3D) arbitrary domains is presented. A Chebyshev collocation scheme (CCS) is introduced for the efficient and accurate approximation of particular solution for the given 3D boundary value problem. We collocate the numerical scheme at the Gauss–Lobatto nodes to ensure the pseudo-spectral convergence of the Chebyshev interpolation. After the particular solution is evaluated, the introduced CCS is coupled with a two-stage and one-stage numerical schemes to evaluate the final solutions of the given problem. In the two-stage approach, the given inhomogeneous problem is converted to a homogeneous equation and then the boundary-type methods, such as the method of fundamental solutions (MFS), can be used to evaluate the resulting homogeneous solutions. In the one-stage scheme, by imposing the boundary conditions directly to the CCS procedure, the final solutions of the given inhomogeneous problem can be obtained straightforward without the need of using the MFS or other boundary methods to find the homogeneous solution. Two benchmark numerical examples in both smooth and piecewise smooth 3D geometries are presented to demonstrate the applicability and efficiency of the proposed method.

Keywords: chebyshev collocation; type equations; helmholtz type; type; three dimensional; numerical solutions

Journal Title: Engineering Analysis with Boundary Elements
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.