LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Free vibration analysis of functionally graded anisotropic microplates using modified strain gradient theory

Photo by codioful from unsplash

Abstract This study presents a size dependent model using the higher-order shear deformation theory (HSDT) in conjunction with modified strain gradient theory (MSGT) for free vibration analysis of functionally graded… Click to show full abstract

Abstract This study presents a size dependent model using the higher-order shear deformation theory (HSDT) in conjunction with modified strain gradient theory (MSGT) for free vibration analysis of functionally graded (FG) anisotropic microplates. The FG anisotropic material is made of hexagonal beryllium crystals which can be considered as a hexagonal one. To consider size effects, three material length scale parameters (MLSPs) are added into the elastic constants of the anisotropic material. Based on the principle of virtual work, discretized governing equations of the FG hexagonal microplates are obtained. Subsequently, the natural frequency of the FG anisotropic microplates is determined by using isogeometric analysis (IGA). Numerical results show that the natural frequency of the FG anisotropic microplates is influenced by the geometry, boundary condition, length-to-thickness ratio, exponential factor and material length scale parameter. The results of classical HSDT model can be restored from the present model when three MLSPs equal to zero. Moreover, the differences of the natural frequency predicted by MSGT and classical HSDT can grow up more than 4.5 times.

Keywords: anisotropic microplates; strain gradient; modified strain; theory; analysis

Journal Title: Engineering Analysis With Boundary Elements
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.