LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Scaled boundary polygon formula for Cosserat continuum and its verification

Photo from wikipedia

Abstract Cosserat continuum method can be used to solve stress concentration of holes. However, with the shape limitation of its elements, it is worthwhile to improve the element quality so… Click to show full abstract

Abstract Cosserat continuum method can be used to solve stress concentration of holes. However, with the shape limitation of its elements, it is worthwhile to improve the element quality so that this method can be universal and feasible to complex situations. In this paper, a flexible polygonal Cosserat continuum analysis method is firstly deduced and numerically developed based on the theory of Scaled Boundary FEM. Stress concentration on the holes embedded in different structures is then investigated using the proposed method and verified against theoretical solution, which not only shows good agreement, but also reasonably weakens the stress concentration. The proposed method can closely replicate the theoretical solution for the case when the material is nearly incompressible (Poisson's ratio close to 0.5), also indicating the robustness of this method. Additionally, complex polygonal elements can be solved directly, coupling the quadtree and polygon discretization techniques seamlessly, wherein the efficiency and convenience are improved for processing complex geometries. The proposed method can provide important technical support for stress concentration analysis of structures with complex holes, and contribute to facilitating shape optimization of holes design.

Keywords: stress concentration; scaled boundary; method; cosserat continuum

Journal Title: Engineering Analysis With Boundary Elements
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.