LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Full-field strain distribution and failure characteristics of CFRP-repaired steel structures

Photo by soheil_rb from unsplash

Abstract Mechanical behavior and fracture characteristics of adhesively bonded and hybrid bonded-riveted repairs with stepped single-side and double-side configurations were investigated. Digital image correlation (DIC) technique was used to systematically… Click to show full abstract

Abstract Mechanical behavior and fracture characteristics of adhesively bonded and hybrid bonded-riveted repairs with stepped single-side and double-side configurations were investigated. Digital image correlation (DIC) technique was used to systematically investigate the effects of repair configuration and repair method on full-field strain distribution and damage evolution process of CFRP-repaired steel structures under static loading. The strain distribution and evolution in the repairs were quantified to figure out failure process and fracture characteristics in details. The failure process of hybrid repairs displayed two stages including initial adhesive failure and final rivet shearing, and the behavior of rivets could prevent catastrophic failure of CFRP-repaired steel structures. Progressive failure process of different repairs indicated that crack initiated and propagated on the edge of repaired region between CFRP laminates and substrates, which was in good agreement with the findings from strain distribution. Mixed failure modes including adhesive failure, thin-layer cohesive failure, light-fiber-tear failure, stock-break/delamination and rivet shearing were identified for specific repairs.

Keywords: cfrp repaired; strain distribution; steel structures; failure; repaired steel

Journal Title: Engineering Failure Analysis
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.