LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Strain-rate dependent influence of adherend stiffness on fracture load prediction of BGA solder joints

Photo by museumsvictoria from unsplash

Abstract Fracture experiments with ball grid array (BGA) specimens having different adherend rigidities were performed under bending loads at intermediate strain rates (0.2–1 s−1) and a high strain rate of 30 s−1.… Click to show full abstract

Abstract Fracture experiments with ball grid array (BGA) specimens having different adherend rigidities were performed under bending loads at intermediate strain rates (0.2–1 s−1) and a high strain rate of 30 s−1. A cohesive zone model (CZM) was established and the predictive capability of the model was assessed for the specimens with different rigidities. The predicted fracture loads were within 12% of the measured forces when the CZM parameters were obtained using specimens with a similar degree of constraint. This suggests that in many practical cases, the effect of adherend stiffness can be neglected in predicting the strength of BGA solder joints.

Keywords: adherend stiffness; fracture; solder joints; strain rate; bga; bga solder

Journal Title: Engineering Fracture Mechanics
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.