LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Higher order J-T-A solution for three-dimensional crack border fields in power-law hardening solids

Photo by inakihxz from unsplash

Abstract Higher order J-A2 solution has been developed to improve the HRR singular solution under ideal plane strain conditions in power-law hardening solids with the the second A2 being considered… Click to show full abstract

Abstract Higher order J-A2 solution has been developed to improve the HRR singular solution under ideal plane strain conditions in power-law hardening solids with the the second A2 being considered to take into account of the in-plane constraint effect, and the J-Tz singular solution has been obtained for three-dimensional (3D) cracked body by introducing the out-of-plane stress constraint factor Tz. Here a higher order J-Tz-AT solution is developed on the basis of the J-Tz and J-A2 solutions and validated against comprehensive 3D finite element (FE) analyses for specimens with through-thickness, surface, embedded and corner cracks. It is shown that better agreements are obtained between the higher order J-Tz-AT solution and 3D FE results in all simulated conditions than previously available two- or three-parameter solutions. For specimens of high in-plane constraint, such as the single-edge cracked tension specimen, compact specimen and single-edge-notched bending specimen under three-point bending, the J-Tz leading singular solution itself shows sufficient accuracy. This universal characterization of crack border stress fields confirms that the developed J-Tz-AT solution combines the advantages of the J-Tz and J-A2 solutions, which can service as a solid foundation of elastic-plastic fracture mechanics.

Keywords: law hardening; higher order; solution; power law; order solution

Journal Title: Engineering Fracture Mechanics
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.