LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Mudstone redox conditions at the Horonobe Underground Research Laboratory, Hokkaido, Japan: Effects of drift excavation

Photo from wikipedia

Abstract The mechanical and hydraulic properties of rocks around mine drifts change significantly during the construction and operation of a radioactive-waste repository, with air intrusion typically causing the oxidation of… Click to show full abstract

Abstract The mechanical and hydraulic properties of rocks around mine drifts change significantly during the construction and operation of a radioactive-waste repository, with air intrusion typically causing the oxidation of rock and groundwater in excavation-damaged zones (EDZ). Redox conditions in such zones associated with niches excavated in mudstone at the Horonobe Underground Research Laboratory (URL), which is believed to be generally representative of conditions that could exist in the EDZ of a repository, were studied with the aim of improving our understanding of factors that control redox conditions in such rock–groundwater systems. Groundwater Eh values around the niches have reducing values of less than −150 mV. The SO42− concentration, regarded as an oxidation indicator, is consistently as low as 1 μmol L−1. Gas occupies >50% of zone volumes, including CH4 and CO2 with traces of N2 and O2. Cores drilled from host rock around a URL gallery were analyzed, with no pyrite dissolution or precipitation of calcium sulfates being found. It is concluded that oxidizing conditions do not exist in the excavation-damaged zones, which is attributed to the suppression of air intrusion by the release of CH4 and CO2 from groundwater as pressures decreased and their accumulation in fractures. The modeling of oxygen diffusion into host rock further indicates that a reducing environment is maintained around the URL drifts.

Keywords: underground research; groundwater; research laboratory; excavation; horonobe underground; redox conditions

Journal Title: Engineering Geology
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.