LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Sub-surface structures and site effects extracted from ambient noise in metropolitan Guangzhou, China

Photo from wikipedia

Abstract In this paper, ambient noise is used to investigate near-surface structures and site effects in metropolitan Guangzhou. We deployed 94 short period stations across Guangzhou area, and later a… Click to show full abstract

Abstract In this paper, ambient noise is used to investigate near-surface structures and site effects in metropolitan Guangzhou. We deployed 94 short period stations across Guangzhou area, and later a dense linear array across the Shougouling Fault (SF). Using more than one month's continuous data, we invert three-dimensional shear wave velocity structures of Guangzhou area via ambient noise tomography. Results show low velocity near the Guangzhou-Conghua Fault (GCF), Shougouling Fault (SF), and beneath the alluvial plain in the south region. Meanwhile, high-velocity anomalies are beneath the mountain area in northeastern region. Moreover, we obtain the sediment thickness and sub-surface shear wave velocity structures around the Shougouling Fault (SF) by horizontal to vertical spectral ratio (HVSR) method. HVSR results show a significant shift in the thickness of the sedimentary layer across the SF. Shear wave velocity derived from HVSR curves has a consistent trend of variation with the sediment thickness. Our results provide a better understanding of sub-surface structures of metropolitan Guangzhou, and can be served as a reference model for geological disaster migration prediction in the city.

Keywords: metropolitan guangzhou; ambient noise; surface; surface structures; sub surface

Journal Title: Engineering Geology
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.