LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Design of stainless steel continuous beams with tubular cross-sections

Photo from wikipedia

Abstract This paper presents a comprehensive study on the application of global plastic design methods, not currently allowed in European specification provisions, to stainless steel rectangular and square hollow section… Click to show full abstract

Abstract This paper presents a comprehensive study on the application of global plastic design methods, not currently allowed in European specification provisions, to stainless steel rectangular and square hollow section continuous beams. The analysis of experimental and numerical continuous beam strengths highlighted that ultimate capacity predictions calculated based on global elastic analysis result in a considerable conservatism due to strain hardening and bending moment redistribution effects. Alternatively, the assessment and reliability analyses of the traditional plastic design methods demonstrated that the Class 1 cross-section limit provided in the European specification can be safely applied for the partial safety factor γ M0 currently provided. However, the analysis evidenced that including bending moment redistribution in capacity predictions is not enough since strain hardening effects play an important role when stocky cross-sections are analysed. Thus, the Continuous Strength Method for indeterminate structures was also assessed and it was found to provide accurate capacity predictions for all analysed stainless steel grades. Finally, an alternative Direct Strength Method design approach is proposed for stainless steel continuous beams based on the Direct Strength Method bending capacity. The proposed method, statistically validated, accounts for strain hardening effects and moment redistribution and provides the best resistance predictions among the different design methods considered.

Keywords: continuous beams; stainless steel; cross sections; design

Journal Title: Engineering Structures
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.