LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Hysteretic behaviour of steel fibre RC coupled shear walls under cyclic loads: Experimental study and modelling

Abstract This paper presents the hysteretic behaviour of three 1/3-scale three-storey steel fibre reinforced concrete (SFRC) coupled shear walls (CSWs) under cyclic loads. The deformation, ductility, energy dissipation, stiffness and… Click to show full abstract

Abstract This paper presents the hysteretic behaviour of three 1/3-scale three-storey steel fibre reinforced concrete (SFRC) coupled shear walls (CSWs) under cyclic loads. The deformation, ductility, energy dissipation, stiffness and crack propagation of the specimens are also discussed and analysed. The results show steel fibre improves the ductility and energy dissipation capacity, and restrains the crack propagation of the CSWs, and delays the degradation of their lateral stiffness and force. Based on the experiments, a simple trilinear model is developed to simulate the skeleton curve of lateral force–displacement of the SFRC CSWs. Through analysing several typical cycles of the hysteretic of these CSWs, the feature points of the proposed hysteretic model are defined which subsequently is used to evaluate the complete hysteretic behaviour of the CSWs. Using existing experimental data and this study, several representative experimental hysteretic cycles are compared with the proposed model. The result indicates a good agreement is reached between the model and experimental results.

Keywords: hysteretic behaviour; cyclic loads; steel fibre; coupled shear; shear walls

Journal Title: Engineering Structures
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.