LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Static and fatigue performance of reinforced concrete beam strengthened with strain-hardening fiber-reinforced cementitious composite

Photo by jordanmcdonald from unsplash

Abstract The static and fatigue performance of reinforced concrete beams strengthened by strain-hardening fiber-reinforced cementitious composite is investigated. Two series of strengthened beam specimens are prepared with different thicknesses of… Click to show full abstract

Abstract The static and fatigue performance of reinforced concrete beams strengthened by strain-hardening fiber-reinforced cementitious composite is investigated. Two series of strengthened beam specimens are prepared with different thicknesses of the enhancement layer (40 mm and 50 mm), and three fatigue stress levels (0.9, 0.8, and 0.7) are tested. The fatigue life, mid-span deflection, and crack mode of the tested specimens are analyzed. Emphasis is placed on the fatigue response of the strain-hardening fiber-reinforced cementitious composite layer and longitudinal reinforcements. A simplified method is proposed to model the fatigue performance of the composite beam. The mechanism of the fatigue enhancement of the strengthened beam compared to a conventional reinforced concrete beam is as follows: (1) the enhancement layer physically contributes by taking part of the stress in the tension zone, and (2) the enhancement layer can lower the strain localization and stress concentration of the longitudinal reinforcements. Several methods for further improvement in the fatigue performance of reinforced concrete beams are suggested.

Keywords: strain; reinforced concrete; fatigue performance; beam

Journal Title: Engineering Structures
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.