Abstract Retrofitting of existing reinforced concrete (RC) frame structures by steel angles and battens (steel-jacketing) is a commonly employed technique used to retrofit beams and columns against gravity and seismic… Click to show full abstract
Abstract Retrofitting of existing reinforced concrete (RC) frame structures by steel angles and battens (steel-jacketing) is a commonly employed technique used to retrofit beams and columns against gravity and seismic loads. Steel-jacketing (SJ) effectively provides additional deformation and strength capacity to RC members but its application is associated with noticeable downtime of the building and non-negligible costs, depending on the amount of structural and non-structural manufacturing and materials. This paper presents an optimization framework aimed at the minimization of seismic retrofitting-related costs by an optimal placement (topological optimization) and amount of steel-jacketing reinforcement. In the proposed framework a 3D RC frame fiber-section model implemented in OpenSees is handled by a genetic algorithm routine that iterates reinforcement configurations to match the optimal solution. The feasibility of each solution is controlled by the outcomes of a static pushover analysis in the framework of N2 method. Results will provide optimized location and amount of steel-jacketing reinforcement, showing how effective and sustainable reduction of retrofitting costs is achievable maintaining a specified safety level.
               
Click one of the above tabs to view related content.