LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Numerical simulation of unbonded prestressed concrete beams using improved applied element method

Photo from wikipedia

Abstract This paper introduces a first attempt of numerical simulation based on the improved applied element method to predict the behavior of prestressed concrete beams with internal unbonded tendon. The… Click to show full abstract

Abstract This paper introduces a first attempt of numerical simulation based on the improved applied element method to predict the behavior of prestressed concrete beams with internal unbonded tendon. The multi-layered element is used for modeling the reinforced concrete beam while the unbonded tendon is modeled as an assemblage of straight normal springs that connect the anchorage points with dummy elements generated between each two successive multi-layered elements. Furthermore, an initial loading procedure is added in which the springs representing the tendon are exposed to an initial strain to consider the effect of prestressing. During the analysis, the strain in the unbonded tendon is assumed to be constant along the beam length and is calculated from the displacements of all the dummy elements and anchorage points. Material and geometric nonlinearities are considered in the proposed model for both the multi-layered element and the unbonded tendon. Several verification examples are presented to examine the capability of the model. Comparison between the numerical and the experimental results has shown good agreement, highlighting the reliability of the proposed model.

Keywords: improved applied; numerical simulation; element; applied element; prestressed concrete; element method

Journal Title: Engineering Structures
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.