LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Large-scale stationary energy storage: Seawater batteries with high rate and reversible performance

Photo by mbrunacr from unsplash

Abstract A new electrolyte (anolyte) for the negative electrode of seawater batteries, based on the combination of two ionic liquids (ILs), a sodium salt, and a SEI-forming additive, is herein… Click to show full abstract

Abstract A new electrolyte (anolyte) for the negative electrode of seawater batteries, based on the combination of two ionic liquids (ILs), a sodium salt, and a SEI-forming additive, is herein reported. The quaternary anolyte is composed of N-methyl-N-propylpyrrolidinium bis(fluorosulfonyl)imide (0.6 mol fraction), N-methyl-N-propylpyrrolidinium bis(trifluoromethanesulfonyl) imide) (0.3 mol fraction), and sodium bis(fluorosulfonyl)imide (0.1 mol fraction). Ethylene carbonate (5 wt% with respect to the ILs and salt mixture) is added to promote SEI formation. The thermal, physicochemical, and electrochemical characterization of the quaternary electrolyte indicate its suitability as an anolyte, as well as the formation of a highly stable interface with the negative (hard carbon) electrode. Lab-scale seawater full cells employing a hard carbon anode and the ionic liquid-based quaternary anolyte show remarkable results in terms of capacity, cyclability, and rate capability at room temperature. Additionally, these cells showed better energy efficiency (voltage efficiency) and cyclability than those based on a conventional organic carbonate-based anolyte.

Keywords: energy storage; seawater; anolyte; seawater batteries; rate; energy

Journal Title: Energy Storage Materials
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.