LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Enabling highly efficient, flexible and rechargeable quasi-solid-state zn-air batteries via catalyst engineering and electrolyte functionalization

Photo from wikipedia

Abstract Flexible Zn-air battery (ZAB) depicts promising prospects for the eventual realization of next-generation flexible electronic devices. However, developing such flexible power sources with high efficiency and durability remains a… Click to show full abstract

Abstract Flexible Zn-air battery (ZAB) depicts promising prospects for the eventual realization of next-generation flexible electronic devices. However, developing such flexible power sources with high efficiency and durability remains a great challenge, largely due to the low effectiveness of the key components within the ZAB configuration. Herein, we demonstrate an efficient, flexible and rechargeable ZAB by integrating an active Co-N-C reversible electrocatalyst and a highly conductive alkalined polyacrylate hydrogel. The active sites for the oxygen reduction and evolution reactions (ORR-OER) within the catalyst are carefully identified and facily tuned, enabling the engineered catalyst to deliver much better bifunctional activities than the noble-metal counterparts yet with only approximately 7% cost of the latter. The alkalined hydrogel affords preeminent ionic conductivity and water retention capability, well satisfies the role for solid-state electrolyte. Impressively, the thus fabricated solid-state flexible ZAB exhibits an open circuit voltage of 1.45 V, a peak power density of 144.6 mW cm−2, a round trip efficiency of 62%, a stable rechargebility for over 400 cycles at 2 mA cm−2 along with excellent flexibility, which even outperform those from many aqueous ZABs, highlighting its great potential as flexible power source for next-generation electronics.

Keywords: efficient flexible; catalyst; air; solid state; flexible rechargeable

Journal Title: Energy Storage Materials
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.