LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Operando STM study of the interaction of imidazolium-based ionic liquid with graphite

Photo by aaronburden from unsplash

Abstract Understanding interactions at the interfaces of carbon with ionic liquids (ILs) is crucially beneficial for the diagnostics and performance improvement of electrochemical devices containing carbon as active materials or… Click to show full abstract

Abstract Understanding interactions at the interfaces of carbon with ionic liquids (ILs) is crucially beneficial for the diagnostics and performance improvement of electrochemical devices containing carbon as active materials or conductive additives in electrodes and ILs as solvents or additives in electrolytes. The interfacial interactions of three typical imidazolium-based ILs, 1-alkyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide (AMImTFSI) ILs having ethyl (C2), butyl (C4) and octyl (C8) chains in their cations, with highly oriented pyrolytic graphite (HOPG) were studied in-situ by electrochemical scanning tunneling microscopy (EC-STM). The etching of HOPG surface and the exfoliation of graphite/graphene flakes as well as cation intercalation were observed at the HOPG/C2MImTFSI interface. The etching also takes place in C4MImTFSI at −1.5 V vs Pt but only at step edges with a much slower rate, whereas C8MIm+ cations adsorbs strongly on the HOPG surface under similar conditions with no observable etching or intercalation. The EC-STM observations can be explained by the increase in van der Waals interaction between the cations and the graphite surface with increasing length of alkyl chains.

Keywords: stm; imidazolium based; stm study; graphite; operando stm

Journal Title: Energy Storage Materials
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.