LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Heteromat-framed metal-organic coordination polymer anodes for high-performance lithium-ion batteries

Photo from wikipedia

Abstract Electroactive organic-based electrode materials have garnered considerable attention as an emerging candidate to replace inorganic counterparts because of their lightweight, mechanical flexibility, and molecular diversity. Yet, their low energy… Click to show full abstract

Abstract Electroactive organic-based electrode materials have garnered considerable attention as an emerging candidate to replace inorganic counterparts because of their lightweight, mechanical flexibility, and molecular diversity. Yet, their low energy and power densities associated with poor electronic conductivity and limited ion accessibility often impose a critical impediment for practical applications. Herein, we report that all-fibrous heteromat framework comprising intermingled polyacrylonitrile nanofibers and carbon nanotubes offers three-dimensional bicontinuous electron/ion conductive pathways toward organic-based active materials. At the same time, the framework eliminates heavy metallic current collectors to allow the overall mechanical flexibility of the rechargeable system. Nickel 2,6-naphthalenedicarboxylate (NiNDC) is prepared as a model organic-based anode material for this electrode strategy. Driven by the structural uniqueness, the self-standing heteromat NiNDC anode ultimately affords facile redox kinetics and outstanding electrochemical performance, while surpassing the performance of conventional lithium-ion battery organic-based anodes.

Keywords: performance; ion; organic based; heteromat framed; lithium ion

Journal Title: Energy Storage Materials
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.