Abstract Poly(ethylene oxide) (PEO) based solid polymer electrolytes (SPEs) have been regarded as promising electrolytes for next-generation all-solid-state lithium batteries (ASSLBs). However, they have achieved limited cycling stability due to… Click to show full abstract
Abstract Poly(ethylene oxide) (PEO) based solid polymer electrolytes (SPEs) have been regarded as promising electrolytes for next-generation all-solid-state lithium batteries (ASSLBs). However, they have achieved limited cycling stability due to their inability to suppress Li dendrite growth. Herein, a self-healing electrostatic shield (SHES) is proposed to force uniform lithium deposition by introducing 0.05 M Cs+. At this situation, the Cs+ shows a lower reduction potential compared to the Li+ reduction potential (1.7 M). During lithium deposition, the Cs+ forms a positively charged electrostatic shield around the initial Li tips, which forces further deposition of lithium to adjacent regions of the anode and results in a dendrite-free Li deposition. With this in mind, the Li–Li symmetric cells can operate for 1000 and 500 h at current densities of 0.1 and 0.2 mA cm−2, respectively, which are 10 times longer than Cs+-free PEO electrolyte. Moreover, the Li/PEO-Cs+/LiFePO4 (LFP) cell achieves high capacity retention of 90% within 100 cycles at 0.5C and retains a high capacity of 113 mAh g−1 at 0.8C, while short-circuits are observed for the Li/PEO/LFP cell, even at 0.2C. This strategy will generate substantial interest and shed light on the development of other dendrite-free SPEs and ASSLBs systems.
               
Click one of the above tabs to view related content.