LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Sodium manganese-rich layered oxides: Potential candidates as positive electrode for Sodium-ion batteries

Photo from archive.org

Sodium-ion batteries (SIBs) are amongst the most attractive alternatives for stationary applications and light electromobility due to potentially substantial cost reductions resulting from the availability, wide distribution, and easily accessible… Click to show full abstract

Sodium-ion batteries (SIBs) are amongst the most attractive alternatives for stationary applications and light electromobility due to potentially substantial cost reductions resulting from the availability, wide distribution, and easily accessible nature its constituents. However, commercialization is hindered - especially by lack of high-performance negative electrodes, little development of advanced electrolytes with suitable electrochemical stability windows (ESW) and electrode-electrolyte interphases (EEI), and the necessity of ongoing optimization of the most promising positive electrodes. Sodium layered oxides (SLOs) are considered one of the best positive electrodes for SIBs, due to relatively facile synthesis, flexibility, versatility, high specific capacity and fast structural Na+ ion diffusion (which potentially enables work at high current densities). Amongst SLOs, sodium manganese-rich layered oxides (SMRLOs) - with general formula NaxMnyTM1-yO2 (y ≥ 0.67; where TM = one or more metal/s) - are the most promising candidates in terms of low-cost, environmental friendliness and cyclability. Advances in research have exploited a wide range of investigative approaches and characterization techniques (e.g. solid-state nuclear magnetic resonance (ssNMR), in situ and ex situ Synchrotron XRD (SXRD), ab initio calculations, etc.) and subsequently established a good understanding of the physicochemical properties of SMRLOs, particularly with respect to their effect on electrochemical performance. The goal of this review is, therefore, to highlight and contextualize the most recent improvements relating to SMRLOs, so as to make available a good understanding of the potential challenges facing commercialization. Conclusions regarding strategies for future SIB commercialization, especially the use of SMRLOs as positive electrodes, are proposed.

Keywords: sodium ion; sodium manganese; layered oxides; sodium; ion batteries

Journal Title: Energy Storage Materials
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.