LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Insight into cathode surface to boost the performance of solid-state batteries

Photo from wikipedia

Abstract Cathode interface instability is a significant obstacle for the practical application of sulfide-based all-solid-state lithium-ion batteries (ASSLIBs). However, the origin of cathode interface degradation is lack of comprehensive understanding.… Click to show full abstract

Abstract Cathode interface instability is a significant obstacle for the practical application of sulfide-based all-solid-state lithium-ion batteries (ASSLIBs). However, the origin of cathode interface degradation is lack of comprehensive understanding. In this paper, X-ray characterizations combined with electrochemical analysis are adopted to investigate the underlying degradation mechanism at cathode interface. The results indicate that residual lithium compounds on the surface of Ni-rich LiNi0.8Mn0.1Co0.1O2 (NMC811) are the main reason that triggering the oxidation of sulfide solid-state electrolytes (SSEs), therefore inducing severe side-reactions at cathode interface and structural degradation of NMC811. The degradation of the cathode interface can be significantly suppressed when the cathode surface is cleaned. As a result, the surface cleaned NMC811 without coating demonstrates significantly improved electrochemical performance in both Li5.5PS4.5Cl1.5 (LPSCl) and Li10GeP2S12 (LGPS) based ASSLIBs, proving the universal application of this strategy.

Keywords: solid state; cathode interface; surface; cathode surface

Journal Title: Energy Storage Materials
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.