LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Phytate induced arsenic uptake and plant growth in arsenic-hyperaccumulator Pteris vittata.

Photo by vedranafilipovic from unsplash

Phytate is abundant in soils, which is stable and unavailable for plant uptake. However, it occurs in root exudates of As-hyperaccumulator Pteris vittata (PV). To elucidate its effect on As… Click to show full abstract

Phytate is abundant in soils, which is stable and unavailable for plant uptake. However, it occurs in root exudates of As-hyperaccumulator Pteris vittata (PV). To elucidate its effect on As uptake and growth, P. vittata were grown on agar media (63 μM P) containing 50 μM As and/or 50 or 500 μM phytate with non As-hyperaccumulator Pteris ensiformis (PE) as a congeneric control for 60 d. Phytate induced efficient As and P uptake, and enhanced growth in PV, but had little effects on PE. The As concentrations in PV fronds and roots were 157 and 31 mg kg-1 in As50+phytate50, 2.2- and 3.1-fold that of As50 treatment. Phosphorus uptake by PV was reduced by 27% in As treatment than the control (P vs. P+As) but increased by 73% comparing phytate500 to phytate500+As, indicating that PV effectively took up P from phytate. Neither As nor phytate affected Fe accumulation in PV, but phytate reduced root Fe concentration in PE (46-56%). As such, the increased As and P and the unsuppressed Fe uptake in PV probably promoted PV growth. Thus, supplying phytate to As-contaminated soils may promote As uptake and growth in PV and its phytoremediation ability.

Keywords: hyperaccumulator pteris; uptake; phytate induced; phytate; growth; pteris vittata

Journal Title: Environmental pollution
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.