LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Using nitrogen concentration and isotopic composition in lichens to spatially assess the relative contribution of atmospheric nitrogen sources in complex landscapes.

Photo by leelashyam from unsplash

Reactive nitrogen (Nr) is an important driver of global change, causing alterations in ecosystem biodiversity and functionality. Environmental assessments require monitoring the emission and deposition of both the amount and… Click to show full abstract

Reactive nitrogen (Nr) is an important driver of global change, causing alterations in ecosystem biodiversity and functionality. Environmental assessments require monitoring the emission and deposition of both the amount and types of Nr. This is especially important in heterogeneous landscapes, as different land-cover types emit particular forms of Nr to the atmosphere, which can impact ecosystems distinctively. Such assessments require high spatial resolution maps that also integrate temporal variations, and can only be feasibly achieved by using ecological indicators. Our aim was to rank land-cover types according to the amount and form of emitted atmospheric Nr in a complex landscape with multiple sources of N. To do so, we measured and mapped nitrogen concentration and isotopic composition in lichen thalli, which we then related to land-cover data. Results suggested that, at the landscape scale, intensive agriculture and urban areas were the most important sources of Nr to the atmosphere. Additionally, the ocean greatly influences Nr in land, by providing air with low Nr concentration and a unique isotopic composition. These results have important consequences for managing air pollution at the regional level, as they provide critical information for modeling Nr emission and deposition across regional as well as continental scales.

Keywords: nitrogen; concentration isotopic; nitrogen concentration; isotopic composition

Journal Title: Environmental pollution
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.