Complexity of anthropogenic influences on coastal ecosystems necessitates use of an integrated assessment strategy for effective interpretation and subsequent management. In this study a multiple lines of evidence (LOE) approach… Click to show full abstract
Complexity of anthropogenic influences on coastal ecosystems necessitates use of an integrated assessment strategy for effective interpretation and subsequent management. In this study a multiple lines of evidence (LOE) approach for sediment assessment, that combined use of chemistry, toxicity, and benthic community structure in the sediment quality triad was used to assess spatiotemporal changes and potential risks of persistent toxic substances (PTSs) in sediments of Masan Bay highlighting "long-term changes" between 1998 and 2014. Specific target objectives encompassed sedimentary PTSs (PAHs, alkylphenols (APs), and styrene oligomers), potential aryl hydrocarbon receptor (AhR; H4IIE-luc assay)- and estrogen receptor (ER; MVLN assay)-mediated activities, and finally several ecological quality (EcoQ) indices of benthic community structure. Concentrations of target PTSs in Masan Bay sediments were generally less by half in 2014 compared to those measured in 1998. Second, AhR-mediated potencies in sediments also decreased during this time interval, whereas ER-mediated potencies increased (+3790%), indicating that there has been substantial ongoing, input of ER agonists over the past 16 years. Potency balance analysis revealed that only 3% and 22% of the AhR- and ER-mediated potencies could be explained by identified known chemicals, such as PAHs and APs, respectively. This result indicated that non-targeted AhR and ER agonists had a considerable presence in the sediments over time. Third, EcoQ indices tended to reflect PTSs contamination in the region. Finally, ratio-to-mean values obtained from the aforementioned three LOEs indicated that quality of sediments from the outer region of the bay had recovery more during the period of 16-years than did the inner region. Overall, the results showed that even with the progress supported by recent efforts from the Korean governmental pollution control, PTSs remain a threat to local ecosystem, especially in the inner region of Masan Bay.
               
Click one of the above tabs to view related content.