LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Abundance, composition, and distribution of microplastics larger than 20 μm in sand beaches of South Korea.

Photo from wikipedia

To support microplastic management, the abundance, composition, and spatial distribution of microplastics on a national scale must be known. Hence, we studied the baseline level of microplastic pollution at 20… Click to show full abstract

To support microplastic management, the abundance, composition, and spatial distribution of microplastics on a national scale must be known. Hence, we studied the baseline level of microplastic pollution at 20 sandy beaches along the South Korean coast. All microplastic particles extracted from the sand samples were identified down to 20 μm in size using Fourier transform infrared spectroscopy. The abundances of large microplastics (L-MPs; 1-5 mm) and small microplastics (S-MPs; 0.02-1 mm) were in the range of 0-2088 n/m2 and 1400-62800 n/m2, respectively. Maximum microplastic abundance was in the size range of 100-150 μm, and particles smaller than 300 μm accounted for 81% of the total abundance. Expanded polystyrene (EPS) accounted for 95% of L-MPs, whereas S-MPs were predominantly composed of polyethylene (49%) and polypropylene (38%). The spatial distribution of L-MPs, excluding EPS, was significantly related to population, precipitation, proximity to a river mouth and abundance of macroplastic debris on beach. However, there were no relationships between S-MPs and other environmental and source-related factors, except for macroplastic debris and L-MPs excluding EPS. These results imply that S-MPs are mainly produced on beaches by weathering, whereas L-MPs other than EPS are mainly introduced from land-based sources and are also partly produced on beaches.

Keywords: sand; distribution microplastics; abundance; distribution; abundance composition

Journal Title: Environmental pollution
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.