LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Comparing and modeling sedimentary profiles of elemental carbon and polycyclic aromatic hydrocarbons between early- and newly-urbanized areas in Shanghai.

Photo by armandoascorve from unsplash

Rapid urbanization created unique urban environment with a characteristic of dramatic modification of land cover, consequently causing profound perturbations in the transport and fate of pollutants in urban ecosystem. Taking… Click to show full abstract

Rapid urbanization created unique urban environment with a characteristic of dramatic modification of land cover, consequently causing profound perturbations in the transport and fate of pollutants in urban ecosystem. Taking a hyper-urbanization city (Shanghai) as an example to reveal the influence of urbanization development on pollutant footprint, this study reconstructed and compared historical evolutions of elemental carbon (EC) and polycyclic aromatic hydrocarbons (PAHs) based on two lake sediment cores (DSL: Dianshan Lake; LXL: Luxun Lake) from early- and newly-urbanized areas, respectively. Historical fluxes of EC and total PAH (Σ16PAHs) showed similar and sharply fluctuant increases occurring after the 1950s in the DSL core later than the LXL core after the 1900s. In modern times (after 2000), the mean fluxes of EC and Σ16PAHs in the LXL core were 2.68- and 1.38-fold greater than those in the DSL core, respectively, indicating the stronger influence from more intensive human activities and longer industrial history in early urbanized area. Based on the significant correlations among socioeconomic factors with EC and Σ16PAH fluxes, the extended STIRPAT (stochastic impacts by regression on population, affluence and technology) models were successfully constructed, revealing that significance of these driving factors were in the order of population > the proportion of heavy industry > coal consumption > gross domestic product (GDP) per capita > vehicle amount. In general, the obvious discrepancy in historical stage and intensity of sedimentary EC and PAH accumulations implied that some newly fast-developing cities still have a chance to adjust urban development strategy to avoid more serious pollution.

Keywords: elemental carbon; newly urbanized; aromatic hydrocarbons; early newly; carbon polycyclic; polycyclic aromatic

Journal Title: Environmental pollution
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.