LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Impact of 13-years of nitrogen addition on nitrous oxide and methane fluxes and ecosystem respiration in a temperate grassland.

Photo from wikipedia

Nitrogen (N) fertilizer application and atmospheric N deposition will profoundly affect greenhouse gas (GHGs) emissions, especially nitrous oxide (N2O) and methane (CH4) fluxes and ecosystem respiration (Re, i.e. CO2 emissions).… Click to show full abstract

Nitrogen (N) fertilizer application and atmospheric N deposition will profoundly affect greenhouse gas (GHGs) emissions, especially nitrous oxide (N2O) and methane (CH4) fluxes and ecosystem respiration (Re, i.e. CO2 emissions). However, the impacts of long-term N inputs and the often associated N-induced soil acidification on GHG fluxes in arid and semi-arid ecosystems, especially temperate grasslands, are still uncertain. An in situ experiment was conducted to investigate the effect of long-term (13-years) N addition on N2O and CH4 fluxes and Re from a temperate grassland in Inner Mongolia, northeast China, from April 2017 to October 2018. Soil pH values in the 0-5 cm layer receiving 120 (N120) and 240 (N240) kg N ha-1 decreased from 7.12 to 4.37 and 4.18, respectively, after 13 years of N inputs. Soil CH4 uptake was significantly reduced, but N2O emission was enhanced significantly by N addition. However, N addition had no impact on Re. Structural Equation Modeling indicated that soil NH4+-N content was the dominant control of N2O emissions, but with less effect of the decreasing pH. In contrast, CH4 uptake was generally controlled by soil pH and NO3--N content, and Re by forb biomass. The measured changes in N2O and CH4 fluxes and Re from temperate grassland will have a profoundly impact on climate change.

Keywords: nitrous oxide; soil; fluxes ecosystem; addition; temperate grassland

Journal Title: Environmental pollution
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.