LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Bioturbation effects on metal release from contaminated sediments are metal-dependent.

Photo from wikipedia

Metal flux measurements inform the mobility, potential bioavailability and risk of toxicity for metals in contaminated sediments and therefore is an important approach for sediment quality assessment. The binding and… Click to show full abstract

Metal flux measurements inform the mobility, potential bioavailability and risk of toxicity for metals in contaminated sediments and therefore is an important approach for sediment quality assessment. The binding and release of metals that contribute to the net flux is strongly influenced by the presence and behaviors of benthic organisms. Here we studied the effects of bioturbation on the mobility and efflux of metals from multi-metal contaminated sediments that inhabited by oligochaete worms or both worms and bivalves. Presence of bivalves enhanced the release of Mn, Co, Ni and Zn but not for copper and chromium, which is likely due to the high affinities of copper and chromium for the solid phase. Metals in the overlying water were primarily associated with fractions smaller than 10 kDa, and the fractionation of all metals were not affected by the presence of the bivalve. Metal fluxes attributed to different processes were also distinguished, and the bioturbation induced effluxes were substantially higher than the diffusive effluxes. Temporal variabilities in the total net effluxes of Mn, Co, Ni and Zn were also observed and were attributed to the biological activities of the bivalves. Overall, the present study demonstrated that the response of different metals to the same bioturbation behavior was different, resulting in distinct mobility and fate of the metal contaminants.

Keywords: contaminated sediments; bioturbation; effects metal; bioturbation effects; release

Journal Title: Environmental pollution
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.