LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Trophic transfer and biotransformation of selenium in the mosquito (Aedes albopictus) and interactive effects with hexavalent chromium.

Photo by anniespratt from unsplash

As an essential micronutrient for animals with a narrow range between essentiality and toxicity, selenium (Se) usually coexists with chromium (Cr) in contaminated aquatic environments. This study investigated effects of… Click to show full abstract

As an essential micronutrient for animals with a narrow range between essentiality and toxicity, selenium (Se) usually coexists with chromium (Cr) in contaminated aquatic environments. This study investigated effects of three diets (Microcystis aeruginosa, Chlorella vulgaris and biofilms) exposed to Se or/and Cr on Aedes albopictus as a vector for the aquatic-terrestrial transfer of Se and Cr. Se(IV)-exposed mosquitoes concentrated Se up to 66-fold faster than Se(VI)-exposed ones, corresponding to the greater Se enrichment in Se(IV)-treated diets. Analysis using synchrotron-based X-ray absorption spectroscopy (XAS) showed that Se(0) (61.9-74.6%) dominated Se(VI)-exposed mosquitoes except for the C. vulgaris-fed larvae (organo-Se, 94.0%), while organo-Se accounted for 93.3-100.0% in Se(IV)-exposed mosquitoes. Cr accumulation in larvae (56.40-87.24 μg Cr/g DW) or adults (19.41-50.77 μg Cr/g DW) was not significantly different among all Cr(VI) treatments, despite varying diet Cr levels. With Cr(0) being dominant (57.7-94.0%), Cr(VI)-exposed mosquitoes posed little threat to predators. Although mosquitoes exposed to Se or Cr had shorter wings, adults supplied with C. vulgaris or biofilms co-exposed to Se(VI) and Cr(VI) had wings significantly (1.1-1.2 fold) longer than Se(VI) only exposed ones. Overall, our study reveals the role of Ae. albopictus in transferring waterborne Se and Cr from the contaminated aquatic ecosystem to the terrestrial ecosystem with the resulting eco-risks to wildlife in both ecosystems.

Keywords: exposed mosquitoes; trophic transfer; selenium; aedes albopictus; chromium

Journal Title: Environmental pollution
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.