In recent years, antibiotic pollution has become worse, especially in China. In this study, the ecotoxicological effects of four frequently used antibiotics with different lipophilic degrees (log Kow) (sulfadiazine (SD),… Click to show full abstract
In recent years, antibiotic pollution has become worse, especially in China. In this study, the ecotoxicological effects of four frequently used antibiotics with different lipophilic degrees (log Kow) (sulfadiazine (SD), sulfamethazine (SM2), enrofloxacin (ENR), and norfloxacin (NOR)) at four concentrations of 1, 5, 20, and 50 mg L-1 were examined using batch cultures of green alga Chlorella vulgaris and cyanobacterium Chrysosporum ovalisporum for 16 days based on changes in chlorophyll fluorescence parameters (chl a, Fv/Fm, and ΦPSII) and responses of the antioxidant system. Besides, the antibiotics removal efficiencies of the two microalgae were investigated. Sulfonamides (SD and SM2) had no significant inhibitory effect on the growth of C. ovalisporum, but had an inhibitory effect on C. vulgaris, whereas fluoroquinolones (ENR and NOR) significantly inhibited C. ovalisporum. The activities of superoxide dismutase, catalase, and glutathione reductase suggested that C. vulgaris was more tolerant to these antibiotics than C. ovalisporum. The increased malondialdehyde level in both algae indicated their tolerance against antibiotics. When compared with C. ovalisporum, C. vulgaris presented better capacity to remove antibiotics. In summary, the four antibiotics exerted time- or concentration-dependent ecotoxicological effects on the microalgae examined, whereas the microalgae could remove the antibiotics based on the log Kow of the antibiotics. The findings of this study contribute to effective understanding of the ecotoxicological effects of antibiotics and their removal by microalgae.
               
Click one of the above tabs to view related content.