LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Critical biomarkers for myocardial damage by fine particulate matter: Focused on PPARα-regulated energy metabolism.

Photo from wikipedia

Fine particulate matter is one of the leading threats to cardiovascular health worldwide. The exploration of novel and sensitive biomarkers to detect damaging effect of fine particulate matter on cardiac… Click to show full abstract

Fine particulate matter is one of the leading threats to cardiovascular health worldwide. The exploration of novel and sensitive biomarkers to detect damaging effect of fine particulate matter on cardiac tissues is of great importance in the better understanding of haze-caused myocardial injury. A link between heart failure and PPARα-regulated energy metabolism has been confirmed previously. Herein, the study intends to reveal the critical biomarkers of fine particulate matter induced myocardial damage from the PPARα-regulated energy metabolism. Ambient fine particulate matter induced severe pathological alterations in cultured cells, accompanied by the decrease in ATP content. Additionally, the expressions of CPT1/CPT2 and levels of CS and MDH, crucial members in β-oxidation and the TCA cycle, were significantly decreased. In direct contrast, fine particulate matter increased the biomarkers of glycolysis, as measured by the accumulation of pyruvate and lactate contents, and the enhanced activities of HK and PKM1/2. Importantly, fine particulate matter-exposed cardiomyocytes exhibited the reduced PPARα level, that increased when cardiomyocytes were co-incubation with WY-14643 and fine particulate matter. Simultaneously, the adverse impact of fine particulate matter on critical biomarkers were observed in β-oxidation, TCA cycle and glycolysis, associated with WY-14643 additional complement. Fine particulate matter caused the myocardial energy metabolism transformation through the regulation of PPARα expression and translation, which provided novel and critical biomarkers for haze particles-caused myocardial damage.

Keywords: fine particulate; particulate matter; energy metabolism; critical biomarkers

Journal Title: Environmental pollution
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.