LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effects of the leaf functional traits of coniferous and broadleaved trees in subtropical monsoon regions on PM2.5 dry deposition velocities.

Plants can intercept airborne particulate matter through deposition. Different types of plants exhibit different functional leaf traits, which can affect the dry deposition velocity (Vd). However, the most crucial leaf… Click to show full abstract

Plants can intercept airborne particulate matter through deposition. Different types of plants exhibit different functional leaf traits, which can affect the dry deposition velocity (Vd). However, the most crucial leaf traits of coniferous and broadleaved trees remain unidentified. In this study, we selected 18 typical plants from the subtropical monsoon regions, where PM2.5 (fine particulate matter with a diameter of ≤2.5 μm) concentrations are relatively high, and classified them into coniferous and broadleaved categories. Subsequently, we analyzed the relationships between Vd and leaf surface free energy (SFE), single leaf area (LAs), surface roughness (SR), specific leaf area (SLA), epicuticular wax content (EWC), and width-to-length ratio (W/L). The results indicated that most coniferous trees exhibited a high Vd. The correlation analysis revealed that SFE, SR, LAs, and W/L were the key factors that affected the Vd of all the tested species. SFE and SLA had the strongest influence on the Vd of broadleaved trees, whereas LAs and SLA had the strongest effect on that of coniferous trees. Most coniferous trees had a high SLA, which can reduce water loss and hinder particle deposition. However, the stiff leaves of coniferous trees fluttered less, resulting in a larger leaf area that enhanced the capture efficiency. The leaf structure of broadleaved trees is more flexible, resulting in erratic flutter, which may impede deposition and lead to high resuspension. Coniferous and broadleaved trees may have different dominant leaf traits that affect particle deposition.

Keywords: traits coniferous; coniferous broadleaved; dry deposition; deposition; broadleaved trees; subtropical monsoon

Journal Title: Environmental pollution
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.