LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Efficient biodegradation of DEHP by CM9 consortium and shifts in the bacterial community structure during bioremediation of contaminated soil.

Photo by oxganggreen from unsplash

Di(2-ethylhexyl) phthalate (DEHP), the most extensively used plasticizer in plastic formulations, is categorized as a priority environmental contaminant with carcinogenic, teratogenic, and mutagenic toxicities. Many isolated microorganisms exhibit outstanding performance… Click to show full abstract

Di(2-ethylhexyl) phthalate (DEHP), the most extensively used plasticizer in plastic formulations, is categorized as a priority environmental contaminant with carcinogenic, teratogenic, and mutagenic toxicities. Many isolated microorganisms exhibit outstanding performance as pure cultures in the laboratory but are unable to cope with harsh environmental conditions in the field. In the present study, a microbial consortium (CM9) with efficient functionality was isolated from contaminated farmland soil. CM9 could consistently degrade 94.85% and 100.00% of DEHP (1000 mg/L) within 24 h and 72 h, respectively, a higher efficiency than those of other reported pure and mixed microorganism cultures. The degradation efficiencies of DEHP and di-n-butyl phthalate were significantly higher than those of dimethyl phthalate and diethyl phthalate (p < 0.05). The primary members of the CM9 consortium were identified as Rhodococcus, Niabella, Sphingopyxis, Achromobacter, Tahibacter, and Xenophilus. The degradation pathway was hypothesized to include both de-esterification and β-oxidation. In contaminated soil, bioaugmentation with CM9 and biochar markedly enhanced the DEHP removal rate to 87.53% within 42 d, compared to that observed by the indigenous microbes (49.31%) (p < 0.05). During simulated bioaugmentation, the dominant genera in the CM9 consortium changed significantly over time, indicating their high adaptability to soil conditions and contribution to DEHP degradation. Rhodococcus, Pigmentiphaga and Sphingopyxis sharply decreased, whereas Tahibacter, Terrimonas, Niabella, Unclassified_f_Caulobacteraceae, and Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium showed considerable increases. These results provide a theoretical framework for the development of in situ bioremediation of phthalate (PAE)-contaminated soil by composite microbial inocula.

Keywords: dehp; consortium; phthalate; cm9 consortium; contaminated soil; soil

Journal Title: Environmental pollution
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.