LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The key role of Geobacter in regulating emissions and biogeochemical cycling of soil-derived greenhouse gases.

Photo from wikipedia

In the past two decades, more and more attentions have been paid to soil-derived greenhouse gases (GHGs) including carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) because there are… Click to show full abstract

In the past two decades, more and more attentions have been paid to soil-derived greenhouse gases (GHGs) including carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) because there are signs that they have rising negative impacts on the sustainability of the earth surface system. Farmlands, particularly paddy soils, have been regarded as the most important emitter of GHGs (nearly 17%) due to a large influx of fertilization and the abundance in animals, plants and microorganisms. Geobacter, as an electroactive microorganism widely occurred in soil, has been well studied on electron transport mechanisms and the direct interspecies electron transfer. These studies on Geobacter illustrate that it has the ability to be involved in the pathways of soil GHG emissions through redox reactions under anaerobic conditions. In this review, production mechanisms of soil-derived GHGs and the amount of these GHGs produced had been first summarized. The cycling process of CH4 and N2O was described from the view of microorganisms and discussed the co-culture relationships between Geobacter and other microorganisms. Furthermore, the role of Geobacter in the production of soil-derived GHGs is defined by biogeochemical cycling. The complete view on the effect of Geobacter on the emission of soil-derived GHGs has been shed light on, and appeals further investigation.

Keywords: derived greenhouse; geobacter; greenhouse gases; soil derived; cycling; soil

Journal Title: Environmental pollution
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.