LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Impacts of fish farming on elemental stoichiometry, fluorescence components, and stable isotopes of dissolved organic matter in a tropical reservoir.

Photo from wikipedia

Aquaculture impacts on aquatic organic matter and ecosystem integrity are poorly understood, especially in tropical regions. Here, we investigated the impacts of Nile tilapia net cage farming on the elemental… Click to show full abstract

Aquaculture impacts on aquatic organic matter and ecosystem integrity are poorly understood, especially in tropical regions. Here, we investigated the impacts of Nile tilapia net cage farming on the elemental stoichiometry, fluorescence components, and stable isotopes of dissolved organic matter (DOM) of the large, tropical Furnas Reservoir (SE Brazil). Early-stage fish farming, i.e., relatively small and recently implemented farms, had detectable incipient effects on DOM characteristics, and these effects differed between reservoir branches. In the less eutrophic Rio Grande branch of the reservoir, we found a reduction in natural humic-like DOM components and an increase in a protein-like DOM component as far as 100 m away from fish farms. Further, we observed a decrease in δ15N-TDN due to fish farming. In the more eutrophic Rio Sapucaí branch, there were only local decreases in C:N ratios, as well as rises in C:P and N:P of DOM due to fish farming. These results suggest that early-stage fish farming had local but detectable effects on aquatic DOM that depended on previous eutrophication levels and highlight the need to assess the early impacts of fish farming on tropical reservoirs by combining different monitoring strategies.

Keywords: dom; farming elemental; organic matter; elemental stoichiometry; fish farming

Journal Title: Environmental pollution
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.