LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Estimating hourly full-coverage PM2.5 over China based on TOA reflectance data from the Fengyun-4A satellite.

Photo from wikipedia

It is challenging to retrieve hourly ground-level PM2.5 on a national scale in China due to the sparse site measurements and the limited coverage of Low Earth Orbit (LEO) satellite… Click to show full abstract

It is challenging to retrieve hourly ground-level PM2.5 on a national scale in China due to the sparse site measurements and the limited coverage of Low Earth Orbit (LEO) satellite observations. The new geostationary meteorological satellite of China, Fengyun-4A (FY-4A), provides a unique opportunity to fill this gap. In this study, the Random Forest (RF) algorithm was applied to retrieve hourly PM2.5 of China directly from FY-4A Top-of-Atmosphere (TOA) reflectance data. A one-year PM2.5 retrieval shows a strong agreement to ground-based measurements, with the averaged R2 approaching 0.92, while the RMSE was only 10.0 μg/m³. An analysis of the regional differences of the performance and the dependency on satellite Viewing Zenith Angle (VZA) show that sparse measurements, high VZA, and solar zenith angle (SZA) are the primary sources of the uncertainty. The use of the FY-4A improved 17% spatial coverage compared to the Himawari-8-based PM2.5 retrievals, enabling full-coverage, hourly PM2.5 monitoring over China, and potentially could improve PM2.5 predictions from air quality models after data assimilation.

Keywords: china; coverage; reflectance data; pm2 china; toa reflectance

Journal Title: Environmental pollution
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.