LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Polyethylene glycol acute and sub-lethal toxicity in neotropical Physalaemus cuvieri tadpoles (Anura, Leptodactylidae).

Photo from wikipedia

Although many polymers are known by their toxicity, we know nothing about the impact of polyethylene glycol (PEG) on anurofauna. Its presence in different products and disposal in aquatic environments… Click to show full abstract

Although many polymers are known by their toxicity, we know nothing about the impact of polyethylene glycol (PEG) on anurofauna. Its presence in different products and disposal in aquatic environments turn assessments about its impact on amphibians an urgent matter. Accordingly, we tested the hypothesis that short-time exposure (72 h) of tadpoles belonging to the species Physalaemus cuvieri (Anura, Leptodactylidae) to PEG induces oxidative stress and neurotoxicity on them. We observed that polymer uptake in P. cuvieri occurred after exposure to 5 and 10 mg/L of PEG without inducing changes in their nitrite levels neither at the levels of substances reactive to thiobarbituric acid. However, hydrogen peroxide and reactive oxygen species production was higher in animals exposed to PEG, whose catalase and superoxide dismutase levels were not enough to counterbalance the production of these reactive species. Therefore, this finding suggests physiological changes altering REDOX homeostasis into oxidative stress. In addition, the increased activity of acetylcholinesterase and butyrylcholinesterase, and reduction in superficial neuromasts, confirmed PEG's neurotoxic potential. To the best of our knowledge, this is the first report on PEG's biological impact on a particular amphibian species. The study has broadened the understanding about ecotoxicological risks associated with water pollution by these polymers, as well as motivated further investigations on its impacts on amphibians' health and on the dynamics of their natural populations.

Keywords: toxicity; anura leptodactylidae; physalaemus cuvieri; polyethylene glycol

Journal Title: Environmental pollution
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.