LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Interactive effects of groundwater level and salinity on soil respiration in coastal wetlands of a Chinese delta.

Photo from wikipedia

Coastal wetland soils serve as a great C sink or source, which highly depends on soil carbon flux affected by complex hydrology in relation to salinity. We conducted a field… Click to show full abstract

Coastal wetland soils serve as a great C sink or source, which highly depends on soil carbon flux affected by complex hydrology in relation to salinity. We conducted a field experiment to investigate soil respiration of three coastal wetlands with different land covers (BL: bare land; SS: Suaeda salsa; PL: Phragmites australis) from May to October in 2012 and 2013 under three groundwater tables (deeper, medium, and shallower water tables) in the Yellow River Delta of China, and to characterize the spatial and temporal changes and the primary environmental drivers of soil respiration in coastal wetlands. Our results showed that the elevated groundwater table decreased soil CO2 emissions, and the soil respiration rates at each groundwater table exhibited seasonal and diurnal dynamics, where significant differences were observed among coastal wetlands with different groundwater tables (p < 0.05), with the average CO2 emission of 146.52 ± 13.66 μmol m-2s-1 for deeper water table wetlands, 105.09 ± 13.48 μmol m-2s-1 for medium water table wetlands and 54.32 ± 10.02 μmol m-2s-1 for shallower water table wetlands. Compared with bare land and Suaeda salsa wetlands, higher soil respiration was observed in Phragmites australis wetlands. Generally, soil respiration was greatly affected by salinity and soil water content. There were significant correlations between groundwater tables, electrical conductivity and soil respiration (p < 0.05), indicating that soil respiration in coastal wetlands was limited by electrical conductivity and groundwater tables and soil C sink might be improved by regulating water and salt conditions. We have also observed that soil respiration and temperature showed an exponential relationship on a seasonal scale. Taking into consideration the changes in groundwater tables and salinity that might be caused by sea level rise in the context of global warming, we emphasize the importance of groundwater level and salinity in the carbon cycle process of estuarine wetlands in the future.

Keywords: groundwater; coastal wetlands; soil respiration; salinity; soil

Journal Title: Environmental pollution
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.