LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Rhizofiltration of combined arsenic-fluoride or lead-fluoride polluted water using common aquatic plants and use of the 'clean' water for alleviating combined xenobiotic toxicity in a sensitive rice variety.

Photo by a2eorigins from unsplash

Groundwater co-contamination with toxic pollutants like arsenic-fluoride or lead-fluoride is a serious threat for safe rice cultivation, since major stretches of land, involved in cultivation of the staple food crop… Click to show full abstract

Groundwater co-contamination with toxic pollutants like arsenic-fluoride or lead-fluoride is a serious threat for safe rice cultivation, since major stretches of land, involved in cultivation of the staple food crop are presently experiencing severe endemic pollution from these xenobiotic combinations. Preliminary investigations established that the combined pollutants together exerted more phytotoxicity in the widely cultivated indica rice variety Khitish, compared with that exerted by the individual contaminants. Thus, an ecologically sustainable and economically viable phytoremediative strategy was designed where three aquatic plants, viz., Azolla (water fern), Pistia (water lettuce) and Eichhornia (water hyacinth) (commonly located across the co-polluted regions) were tested for their ability to rhizofiltrate the water samples that had been polluted with arsenic-fluoride or lead-fluoride. Water lettuce exhibited the highest ability to 'clean' both arsenic-fluoride and lead-fluoride polluted water due to its capacity of efficient phytoextraction and phytostabilization. Irrigation of Khitish seedlings with this de-polluted water appreciably reduced malondialdehyde formation, electrolyte leakage and irreversible protein carbonylation due to suppression in NADPH oxidase activity and reactive oxygen species production, compared with those in sets grown with non-treated, arsenic-fluoride or lead-fluoride contaminated water. Oxidative injuries, cytotoxic methylglyoxal synthesis and inhibition of biomass growth were ameliorated, and chlorophyll synthesis and Hill activity were increased due to reduced bioaccumulation of xenobiotics, along with the improved uptake of vital micronutrients like iron, copper and nickel. Overall, the current investigation illustrated a cheap, farmer-friendly blueprint which could be easily promulgated to ensure safe rice cultivation even across territories that are severely co-polluted with the mixed contaminants.

Keywords: lead fluoride; arsenic fluoride; water; rice; fluoride lead

Journal Title: Environmental pollution
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.