LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Surfactant-modified Zn/Al-layered double hydroxides for efficient extraction of alkyl phenols from aqueous samples.

Photo from archive.org

Zn/Al-layered double hydroxides (LDHs) modified by sodium dodecylsulfate (SDS) were synthesized as a hydrophobic organic sorbent via urea hydrolysis. LDHs were applied as adsorbent for solid phase extraction (SPE) analysis… Click to show full abstract

Zn/Al-layered double hydroxides (LDHs) modified by sodium dodecylsulfate (SDS) were synthesized as a hydrophobic organic sorbent via urea hydrolysis. LDHs were applied as adsorbent for solid phase extraction (SPE) analysis to determine three alkylphenols (namely, p-tert-amylphenol (PTAP), p-cumylphenol (PCP), and p-n-octylphenol (POP)) in water samples using gas chromatography-mass spectrometry. The extraction efficiency was optimized by adjusting key variables of eluent volume, eluent type, sample flow rate, adsorbent amount, pH, and the effect of salt addition. Under the optimal conditions, APs showed excellent linearity (1-250 ng/mL: R2 > 0.99) and reproducibility (relative standard deviation: <5%). The detection limits for PTAP, PCP, and POP were 19, 16, and 33 pg/mL, respectively. LDHs based SPE method offered high recovery for aqueous samples (e.g., 83.2-99.46%) with enhanced reusability (e.g., up to 10 cycles). The feasibility of the developed method has thus been validated for quantitation of three alkyl phenols (i.e., PTAP, PCP, and POP) in aqueous environmental samples with high sensitivity and good stability.

Keywords: layered double; extraction; aqueous samples; double hydroxides; alkyl phenols

Journal Title: Environmental research
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.